\(\int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx\) [380]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 197 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=-\frac {75 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {13 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {49 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}} \]

[Out]

-1/4*sin(d*x+c)*sec(d*x+c)^(1/2)/d/(a+a*cos(d*x+c))^(5/2)-13/16*sin(d*x+c)*sec(d*x+c)^(1/2)/a/d/(a+a*cos(d*x+c
))^(3/2)-75/32*arctan(1/2*sin(d*x+c)*a^(1/2)*2^(1/2)/cos(d*x+c)^(1/2)/(a+a*cos(d*x+c))^(1/2))*cos(d*x+c)^(1/2)
*sec(d*x+c)^(1/2)/a^(5/2)/d*2^(1/2)+49/16*sin(d*x+c)*sec(d*x+c)^(1/2)/a^2/d/(a+a*cos(d*x+c))^(1/2)

Rubi [A] (verified)

Time = 0.55 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {4307, 2845, 3057, 3063, 12, 2861, 211} \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=-\frac {75 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)} \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a \cos (c+d x)+a}}\right )}{16 \sqrt {2} a^{5/2} d}+\frac {49 \sin (c+d x) \sqrt {\sec (c+d x)}}{16 a^2 d \sqrt {a \cos (c+d x)+a}}-\frac {13 \sin (c+d x) \sqrt {\sec (c+d x)}}{16 a d (a \cos (c+d x)+a)^{3/2}}-\frac {\sin (c+d x) \sqrt {\sec (c+d x)}}{4 d (a \cos (c+d x)+a)^{5/2}} \]

[In]

Int[Sec[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(-75*ArcTan[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Cos[c + d*x]])]*Sqrt[Cos[c + d*x]]*S
qrt[Sec[c + d*x]])/(16*Sqrt[2]*a^(5/2)*d) - (Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(4*d*(a + a*Cos[c + d*x])^(5/2))
 - (13*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(16*a*d*(a + a*Cos[c + d*x])^(3/2)) + (49*Sqrt[Sec[c + d*x]]*Sin[c + d
*x])/(16*a^2*d*Sqrt[a + a*Cos[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 2845

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[b^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dis
t[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[b*c*(m + 1) - a*d*
(2*m + n + 2) + b*d*(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d,
0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] &&  !GtQ[n, 0] && (IntegersQ[2*m, 2*n] || (IntegerQ
[m] && EqQ[c, 0]))

Rule 2861

Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]]), x_Symbol] :> D
ist[-2*(a/f), Subst[Int[1/(2*b^2 - (a*c - b*d)*x^2), x], x, b*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c +
 d*Sin[e + f*x]]))], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 -
 d^2, 0]

Rule 3057

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(A*b - a*B)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*
x])^(n + 1)/(a*f*(2*m + 1)*(b*c - a*d))), x] + Dist[1/(a*(2*m + 1)*(b*c - a*d)), Int[(a + b*Sin[e + f*x])^(m +
 1)*(c + d*Sin[e + f*x])^n*Simp[B*(a*c*m + b*d*(n + 1)) + A*(b*c*(m + 1) - a*d*(2*m + n + 2)) + d*(A*b - a*B)*
(m + n + 2)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2
- b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -2^(-1)] &&  !GtQ[n, 0] && IntegerQ[2*m] && (IntegerQ[2*n] || EqQ[c,
0])

Rule 3063

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x]
)^(n + 1)/(f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*(n + 1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin
[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e +
f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2
 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m + 1/2, 0])

Rule 4307

Int[(csc[(a_.) + (b_.)*(x_)]*(c_.))^(m_.)*(u_), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Sin[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSineIntegrandQ[u,
 x]

Rubi steps \begin{align*} \text {integral}& = \left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{5/2}} \, dx \\ & = -\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {9 a}{2}-2 a \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) (a+a \cos (c+d x))^{3/2}} \, dx}{4 a^2} \\ & = -\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {13 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\frac {49 a^2}{4}-\frac {13}{2} a^2 \cos (c+d x)}{\cos ^{\frac {3}{2}}(c+d x) \sqrt {a+a \cos (c+d x)}} \, dx}{8 a^4} \\ & = -\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {13 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {49 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int -\frac {75 a^3}{8 \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{4 a^5} \\ & = -\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {13 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {49 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}-\frac {\left (75 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}} \, dx}{32 a^2} \\ & = -\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {13 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {49 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}}+\frac {\left (75 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \text {Subst}\left (\int \frac {1}{2 a^2+a x^2} \, dx,x,-\frac {a \sin (c+d x)}{\sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right )}{16 a d} \\ & = -\frac {75 \arctan \left (\frac {\sqrt {a} \sin (c+d x)}{\sqrt {2} \sqrt {\cos (c+d x)} \sqrt {a+a \cos (c+d x)}}\right ) \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}}{16 \sqrt {2} a^{5/2} d}-\frac {\sqrt {\sec (c+d x)} \sin (c+d x)}{4 d (a+a \cos (c+d x))^{5/2}}-\frac {13 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a d (a+a \cos (c+d x))^{3/2}}+\frac {49 \sqrt {\sec (c+d x)} \sin (c+d x)}{16 a^2 d \sqrt {a+a \cos (c+d x)}} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 6.53 (sec) , antiderivative size = 508, normalized size of antiderivative = 2.58 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {2 \cos ^5\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec ^4\left (\frac {1}{2} (c+d x)\right ) \sin \left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {1}{1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right )^{3/2} \left (\frac {8 \cos ^6\left (\frac {1}{2} (c+d x)\right ) \, _4F_3\left (2,2,2,\frac {5}{2};1,1,\frac {11}{2};\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}\right ) \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{315 \left (-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )}+\frac {1}{120} \csc ^8\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (1-2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )\right )^2 \sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-15 \text {arctanh}\left (\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}}\right ) \cos ^4\left (\frac {1}{2} (c+d x)\right ) \left (-343+1465 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-2021 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+824 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )\right )+\sqrt {\frac {\sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}{-1+2 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )}} \left (-5145+33980 \sin ^2\left (\frac {c}{2}+\frac {d x}{2}\right )-87764 \sin ^4\left (\frac {c}{2}+\frac {d x}{2}\right )+109737 \sin ^6\left (\frac {c}{2}+\frac {d x}{2}\right )-66122 \sin ^8\left (\frac {c}{2}+\frac {d x}{2}\right )+15344 \sin ^{10}\left (\frac {c}{2}+\frac {d x}{2}\right )\right )\right )\right )}{d (a (1+\cos (c+d x)))^{5/2}} \]

[In]

Integrate[Sec[c + d*x]^(3/2)/(a + a*Cos[c + d*x])^(5/2),x]

[Out]

(2*Cos[c/2 + (d*x)/2]^5*Sec[(c + d*x)/2]^4*Sin[c/2 + (d*x)/2]*((1 - 2*Sin[c/2 + (d*x)/2]^2)^(-1))^(3/2)*((8*Co
s[(c + d*x)/2]^6*HypergeometricPFQ[{2, 2, 2, 5/2}, {1, 1, 11/2}, Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/
2]^2)]*Sin[c/2 + (d*x)/2]^2)/(315*(-1 + 2*Sin[c/2 + (d*x)/2]^2)) + (Csc[c/2 + (d*x)/2]^8*(1 - 2*Sin[c/2 + (d*x
)/2]^2)^2*Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*(-15*ArcTanh[Sqrt[Sin[c/2 + (d*x)/2]^2/(-1
+ 2*Sin[c/2 + (d*x)/2]^2)]]*Cos[(c + d*x)/2]^4*(-343 + 1465*Sin[c/2 + (d*x)/2]^2 - 2021*Sin[c/2 + (d*x)/2]^4 +
 824*Sin[c/2 + (d*x)/2]^6) + Sqrt[Sin[c/2 + (d*x)/2]^2/(-1 + 2*Sin[c/2 + (d*x)/2]^2)]*(-5145 + 33980*Sin[c/2 +
 (d*x)/2]^2 - 87764*Sin[c/2 + (d*x)/2]^4 + 109737*Sin[c/2 + (d*x)/2]^6 - 66122*Sin[c/2 + (d*x)/2]^8 + 15344*Si
n[c/2 + (d*x)/2]^10)))/120))/(d*(a*(1 + Cos[c + d*x]))^(5/2))

Maple [A] (verified)

Time = 6.13 (sec) , antiderivative size = 266, normalized size of antiderivative = 1.35

method result size
default \(\frac {\left (75 \left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+49 \sqrt {2}\, \left (\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )+225 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \left (\cos ^{2}\left (d x +c \right )\right ) \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+85 \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {2}+225 \cos \left (d x +c \right ) \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )+32 \sqrt {2}\, \sin \left (d x +c \right )+75 \sqrt {\frac {\cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \arcsin \left (\cot \left (d x +c \right )-\csc \left (d x +c \right )\right )\right ) \left (\sec ^{\frac {3}{2}}\left (d x +c \right )\right ) \sqrt {a \left (1+\cos \left (d x +c \right )\right )}\, \cos \left (d x +c \right ) \sqrt {2}}{32 d \left (1+\cos \left (d x +c \right )\right )^{3} a^{3}}\) \(266\)

[In]

int(sec(d*x+c)^(3/2)/(a+cos(d*x+c)*a)^(5/2),x,method=_RETURNVERBOSE)

[Out]

1/32/d*(75*cos(d*x+c)^3*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+49*2^(1/2)*cos(d*x+c)^
2*sin(d*x+c)+225*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*cos(d*x+c)^2*arcsin(cot(d*x+c)-csc(d*x+c))+85*sin(d*x+c)*co
s(d*x+c)*2^(1/2)+225*cos(d*x+c)*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c))+32*2^(1/2)*sin
(d*x+c)+75*(cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arcsin(cot(d*x+c)-csc(d*x+c)))*sec(d*x+c)^(3/2)*(a*(1+cos(d*x+c))
)^(1/2)*cos(d*x+c)/(1+cos(d*x+c))^3*2^(1/2)/a^3

Fricas [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.86 \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\frac {75 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {a \cos \left (d x + c\right ) + a} \sqrt {\cos \left (d x + c\right )}}{\sqrt {a} \sin \left (d x + c\right )}\right ) + \frac {2 \, \sqrt {a \cos \left (d x + c\right ) + a} {\left (49 \, \cos \left (d x + c\right )^{2} + 85 \, \cos \left (d x + c\right ) + 32\right )} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}} \]

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

1/32*(75*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)*sqrt(a*cos(d*
x + c) + a)*sqrt(cos(d*x + c))/(sqrt(a)*sin(d*x + c))) + 2*sqrt(a*cos(d*x + c) + a)*(49*cos(d*x + c)^2 + 85*co
s(d*x + c) + 32)*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos
(d*x + c) + a^3*d)

Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**(3/2)/(a+a*cos(d*x+c))**(5/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^(5/2), x)

Giac [F]

\[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {3}{2}}}{{\left (a \cos \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

[In]

integrate(sec(d*x+c)^(3/2)/(a+a*cos(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(3/2)/(a*cos(d*x + c) + a)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {3}{2}}(c+d x)}{(a+a \cos (c+d x))^{5/2}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{3/2}}{{\left (a+a\,\cos \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

[In]

int((1/cos(c + d*x))^(3/2)/(a + a*cos(c + d*x))^(5/2),x)

[Out]

int((1/cos(c + d*x))^(3/2)/(a + a*cos(c + d*x))^(5/2), x)